Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Abstract Understanding and forecasting Tropical Pacific Decadal‐scale Variability (TPDV) strongly rely on climate model simulations. Using a Linear Inverse Modeling (LIM) diagnostic approach, we reveal Coupled Model Intercomparison Project Phase 6 models have significant challenges in reproducing the spatial structure and dominant mechanisms of TPDV. Specifically, while the models' ensemble mean pattern of TPDV resembles that of observations, the spread across models is very large and most models show significant differences from observations. In observations, removing the coupling between extratropics and tropics reduces TPDV by ∼60%–70%, and removing the tropical thermocline variability makes the central tropical Pacific a key center of action for TPDV and El Niño Southern Oscillation variability. These characteristics are only confirmed in a subset of models. Differences between observations and simulations are outside the range of natural internal TPDV noise and pose important questions regarding our ability to model the impacts of natural internal low‐frequency variability superimposed on long‐term climate change.more » « less
-
Abstract A critical issue is determining the factors that control the year-to-year variability in precipitation over southern Asia. In this study, we employ a cyclostationary linear inverse model (CS-LIM) to quantify the relative contribution of tropical Pacific and Indian Ocean sea surface temperature anomalies (SSTAs) to the interannual variability of the Asian monsoon, especially Indian summer monsoon rainfall (ISMR). Through a series of CS-LIM experiments, we isolate the impacts of the direct forcing from Pacific SSTAs, Indian Ocean SSTAs, and their interaction on Asian monsoon rainfall variability. Our results reveal distinct patterns of influence with the direct forcing from the Pacific (Indian) Ocean tending to enhance (reduce) the magnitude of precipitation variability, while the Indo-Pacific interaction acts to strongly damp the variability of Asian monsoon precipitation, especially over India. We further investigate these specific impacts on ISMR by analyzing the relationship between tropical Indo-Pacific SSTAs and the leading three empirical orthogonal functions (EOFs) of ISMR. The results from our CS-LIM experiments indicate that the direct forcing from El Niño–Southern Oscillation (ENSO) enhances the variability of the first and third EOFs, while the Indian Ocean SSTA opposes ENSO’s effects, which is consistent with previous studies. Our new results show that the tropical Indo-Pacific interaction strongly damps ISMR variability, which is due to the ENSO-induced Indian Ocean dipole (IOD) opposing the direct impacts from ENSO on ISMR. Additionally, reduced ENSO amplitude and duration associated with the Indo-Pacific interaction may also contribute to the damping effect on ISMR, but this requires further study to understand the relevant mechanisms.more » « less
-
Abstract Assessing uncertainty in future climate projections requires understanding both internal climate variability and external forcing. For this reason, single‐model initial condition large ensembles (SMILEs) run with Earth System Models (ESMs) have recently become popular. Here we present a new 20‐member SMILE with the Energy Exascale Earth System Model version 1 (E3SMv1‐LE), which uses a “macro” initialization strategy choosing coupled atmosphere/ocean states based on inter‐basin contrasts in ocean heat content (OHC). The E3SMv1‐LE simulates tropical climate variability well, albeit with a muted warming trend over the twentieth century due to overly strong aerosol forcing. The E3SMv1‐LE's initial climate spread is comparable to other (larger) SMILEs, suggesting that maximizing inter‐basin ocean heat contrasts may be an efficient method of generating ensemble spread. We also compare different ensemble spread across multiple SMILEs, using surface air temperature and OHC. The Community Earth system Model version 1, the only ensemble which utilizes a “micro” initialization approach perturbing only atmospheric initial conditions, yields lower spread in the first ∼30 years. The E3SMv1‐LE exhibits a relatively large spread, with some evidence for anthropogenic forcing influencing spread in the late twentieth century. However, systematic effects of differing “macro” initialization strategies are difficult to detect, possibly resulting from differing model physics or responses to external forcing. Notably, the method of standardizing results affects ensemble spread: control simulations for most models have either large background trends or multi‐centennial variability in OHC. This spurious disequlibrium behavior is a substantial roadblock to understanding both internal climate variability and its response to forcing.more » « less
-
Abstract Anthropogenic carbon emissions and associated climate change are driving rapid warming, acidification, and deoxygenation in the ocean, which increasingly stress marine ecosystems. On top of long‐term trends, short term variability of marine stressors can have major implications for marine ecosystems and their management. As such, there is a growing need for predictions of marine ecosystem stressors on monthly, seasonal, and multi‐month timescales. Previous studies have demonstrated the ability to make reliable predictions of the surface ocean physical and biogeochemical state months to years in advance, but few studies have investigated forecast skill of multiple stressors simultaneously or assessed the forecast skill below the surface. Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble (SMYLE) along with novel observation‐based biogeochemical and physical products to quantify the predictive skill of dissolved inorganic carbon (DIC), dissolved oxygen, and temperature in the surface and subsurface ocean. CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple months in advance in key oceanic regions and frequently outperforms persistence forecasts. We find up to 10 months of skillful forecasts, with particularly high skill in the Northeast Pacific (Gulf of Alaska and California Current Large Marine Ecosystems) for temperature, surface DIC, and subsurface oxygen. Our findings suggest that dynamical marine ecosystem prediction could support actionable advice for decision making.more » « less
An official website of the United States government
